Optimized Propellant Maneuver (OPM) from +XVV to -XVV Qualify sams2, 121f03 at LAB1O1, ER2, Lower Z Panel:[191.54 -40.54 135.25] 500.0000 sa/sec (200.00 Hz) sams2, 121f03 Hanning, k = 877 Δf = 0.015 Hz. Nfft = 32768 Temp. Res. = 32.768 sec, No = 16384 Start GMT 01-August-2012, 214/08:00:00.001 Span = 7.97 hours 9 8 8 5 5 4 -7 -8 Σ PSD Magnitude [log 10(g²/Hz)] Frequency (Hz) -9 -10 -11 09:00 12:00 10:00 13:00 14:00 15:00 16:00 GMT 01-August-2012, 214/hh:mm

PIMS ISS Acceleration Handbook
Date last modified 2013-02-04

Description	
Sensor	121f03 500 sa/sec (200 Hz)
Location	LAB1O1, ER2, Lower Z Panel
Plot Type	spectrogram (Σ); f < 10 Hz

Notes:

Glenn Research Center

- Historically, the ISS has been maneuvered from one attitude to another using the most direct route via an Eigen axis maneuver. For the Optimized Propellant Maneuver (OPM), flight controllers perform a sequence of several small maneuvers, which takes the station on a less direct route to the new attitude. This indirect route leverages environmental forces on the station to assist the maneuver, resulting in a significant propellant savings.
- This spectrogram shows the impact of the OPM in preparation for Progress 48P docking from a sensor located in the USL. Note the broadband excitation below 6 Hz, mostly concentrated at vehicle structural modes.
- The gray arrows on the time-axis mark the start and stop of the OPM from GMT 01-Aug-2012/1:55-13:25.

Regime:	Vibratory
Category:	Vehicle
Source:	OPM

Optimized Propellant Maneuver (OPM) from +XVV to -XVV Qualify

PIMS ISS Acceleration Handbook Date last modified 2013-02-04

Description	
Sensor	121f05 142 sa/sec (6 Hz)
Location	JPM1F5, ER4, Drawer 2
Plot Type	spectrogram (Σ); f < 1 Hz

Notes:

- This spectrogram shows a zoom-in below 1 Hz for the same span and of the OPM event described on the previous page.
- Note the emergence of a lower mode during the OPM indicated by the horizontal, clear right-arrow and subsequent return to nominal "mode one" afterwards.
- This JEM sensor also registers higher levels of structural excitation compared to the USL.

Regime:	Vibratory
Category:	Vehicle
Source:	OPM

Optimized Propellant Maneuver (OPM) from -XVV to +XVV Qualify

PIMS ISS Acceleration Handbook	
Date last modified 2013-02-04	

Description	
Sensor	121f05 142 sa/sec (6 Hz)
Location	JPM1F5, ER4, Drawer 2
Plot Type	spectrogram (Σ); f < 1 Hz

Notes:

- According to the as-flown timeline, another OPM was performed to maneuver the station from –XVV to +XVV on GMT 02-Aug-2012 from 04:15-05:45. This spectrogram shows it actually started a bit early.
- Compared to the previous day's OPM, this one did not exhibit the distinctive shift down in frequency, but clearly shows twin peaks just at/below about 0.1 Hz ("mode one").

Regime:	Vibratory
Category:	Vehicle
Source:	Mode One

Optimized Propellant Maneuver (OPM) from +XVV to -XVV Quantify

mams, ossbtmf at LAB102, ER1, Lockers 3,4:[135.28 -10.68 132.12] 0.0625 sa/sec (0.01 Hz)

Optimized Propellant Maneuver (OPM)

SSAnalysis[0.0 0.0 0.0]

Maneuver from +XVV to -XVV for Progress (48P) Docking

Description	
Sensor	MAMS OSS 0.0625 sa/sec, (0.01 Hz)
Location	LAB1O2, ER1, Lockers 3,4
Plot Type	Per-axis ug vs. time

Notes:

The per-axis acceleration versus time plots shown to the left spans 3 hours starting at GMT 01-Aug-2012/10:55 and shows the quasi-steady impact of this OPM as follows:

- 1. The X-axis exhibits a low-level offset (about 0.7 ug) that gradually comes and goes over about a 45-minute span.
- 2. The Y-axis exhibits a distinctive, bipolar event with peak-to-peak magnitude of about 4 ug. This occurs during the same span as the X-axis' offset.
- 3. The Z-axis is mostly unaffected during the OPM.

Glenn Research Center

Regime: Quasi-steady

Category: Vehicle

Source: OPM

Optimized Propellant Maneuver (OPM) from -XVV to +XVV Quantify

mams, ossbtmf at LAB102, ER1, Lockers 3.4:[135.28 –10.68 132.12]
0.0625 sa/sec (0.01 Hz)

Optimized Prop Maneuver (OPM)

Maneuver from -XVV to +XVV

SSAnalysis[0.0 0.0 0.0]

Description	
Sensor	MAMS OSS 0.0625 sa/sec, (0.01 Hz)
Location	LAB1O2, ER1, Lockers 3,4
Plot Type	Per-axis ug vs. time

Notes:

The per-axis acceleration versus time plots shown to the left spans 3 hours starting at GMT 01-Aug-2012/10:55 and shows the quasi-steady impact of this OPM as follows:

- 1. The X-axis exhibits a low-level offset (about 0.7 ug) that gradually comes and goes over about a 45-minute span.
- 2. The Y-axis exhibits a distinctive, bipolar event with peak-to-peak magnitude of about 4 ug. This occurs during the same span as the X-axis' offset. Note the polarity is reversed from previous day event (see previous page).
- 3. The Z-axis is mostly unaffected during the OPM.

Glenn Research Center

Regime: Quasi-steady

Category: Vehicle

Source: OPM